Developing Practical Management Strategies to Promote Coral Recovery Following a Severe Bleaching Event in Hawai'i
Project Team

Anne Rosinski, University of Hawaii at Mānoa/Hawaii Coral Reef Initiative
William Walsh, Hawaii Division of Aquatic Resources
Charles Birkeland, University of Hawaii at Mānoa
Ivor Williams, NOAA Coral Reef Ecosystem Program
Kelvin Goropse NOAA Coral Reef Ecosystem Program
Tom Oliver, NOAA Coral Reef Ecosystem Program
Jamison Gove, NOAA Pacific Islands Fisheries Science Center
Linda Preskitt, Eyes of the Reef/Hawaii Division of Aquatic Resources
Eric Conklin, The Nature Conservancy of Hawaii
Darla White, Hawaii Division of Aquatic Resources
Question:

What management strategies are considered the most effective at promoting coral recovery following a mass bleaching event?
Approach

1. Global coral bleaching expert survey
2. Literature review of reef recovery recommendations and case studies
3. Hawaii managers decision-making workshop

Photo: Hawaii Division of Aquatic Resources
Global Coral Bleaching Expert Survey: Respondents

1. Lead author on a scientific paper or peer-reviewed article related to coral bleaching or other relevant topic (e.g. herbivory, coral propagation).
 - Paper focused on Hawaii – all authors
 - Paper focused outside of Hawaii – lead author only

2. Participant in 2014-2015 Hawaii coral bleaching workshops

3. Resource manager/scientist outside of Hawaii who has responded to bleaching events.
Global Coral Bleaching Expert Survey: Management Strategy Categories

- Marine Protected Areas
- Fisheries Rules
- Human In-water Activity Rules
- Aquaculture techniques
- Land-based strategies
- Eradication Techniques
- Other Strategies
Global Coral Bleaching Expert Survey: Implementation

- Online targeted interview shared with 174 coral bleaching experts

- 5-point weighted Likert scale from “not effective” to “very effective”

- Score 22 management strategies based on ecological effectiveness
Global Coral Bleaching Expert Survey: Results

n = 82 (47% response rate)

Mahalo to ICRS survey respondents!
Results: Respondent Demographics

- Scientist: 78%
- Manager: 14%
- Other: 8%

Number of Respondents vs. Number of Publications:
- 0 publications: 5
- 1-5 publications: 15
- 6-10 publications: 10
- > 10 publications: 30

Number of Respondents vs. Professional Experience:
- 1-5 years: 5
- 6-10 years: 15
- > 10 years: 30
Results – Top 5 Most Ecologically Effective Management Strategies

- Reduce sediment stress on coral reefs by implementing additional land-based mitigation in adjacent watersheds
- Reduce nutrient/chemical stress on coral reefs by implementing additional land-based mitigation in adjacent watersheds
- Establish a network of permanent, fully protected no-take MPAs
- Enhance marine enforcement efforts to ensure the effectiveness of rules relating to coral reef protection
- Establish a network of permanent Herbivore Fishery Management Area (FMA) which fully protect all herbivores
Results – Top 5 **LEAST** Ecologically Effective Management Strategies

- Create artificial reefs in heavily bleaching-impacted reef areas
- Attempt to eradicate introduced fish species such as the Roi, or Peacock Grouper, Cephalopholis argus
- Establish a network of temporary, rotationally closed, no-take MPAs
- Attempt to eradicate the Crown of Thorns Starfish, Acanthaster plancii
- Establish a temporary moratorium on aquarium collecting
Coral Recovery Literature Review: Resulting Framework

Is there capacity for natural recovery?
- Yes
- No

Is the natural rate of recovery sufficient?
- Yes
- No

Monitoring
- Prevent additional damage to coral
 - Creation of MPAs
 - Reduction of harmful human activities
- Control algae overgrowth
 - Protection of herbivores through fisheries management
 - Reduction of anthropogenic factors that promote algal growth
- Bolster existing management
 - Stimulate new coral settlement
 - Protect larval sources
 - Ensure adequate settlement substrate
 - Stimulate coral regrowth
 - Reduction of anthropogenic factors that affect early coral life stages
 - Facilitate conditions for rapid tissue regeneration
 - Replacing dead coral
 - Transplantation of fragments from healthy reefs
 - Farming bleaching resistant genotypes
 - Active recovery
Coral Recovery Literature Review: Management Intervention Case Studies

- Creation of no-anchor zones on GBR (Beeden et al 2014)
- Transplantation of coral fragments in Philippines (Gomez et al 2014)
- Closure of high-traffic dive sites in Southeast Asia (Hyde 2013, Yeemin et al 2012, Tun et al 2010)
- Aquarium fishers impose self-moratorium on GBR (Great Barrier Reef Authority 2008)
Coral Bleaching Recovery Workshop Output – Top 10 Statewide Management Recommendations

<table>
<thead>
<tr>
<th>Action</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish a network of permanent, fully protected no-take MPAs</td>
<td>50</td>
</tr>
<tr>
<td>Reduce sediment stress on coral reefs by implementing additional land-based mitigation in adjacent watersheds</td>
<td>29</td>
</tr>
<tr>
<td>Reduce nutrient/chemical stress on coral reefs by implementing additional land-based mitigation in adjacent watersheds</td>
<td>21</td>
</tr>
<tr>
<td>Enhance marine enforcement efforts to ensure the effectiveness of rules relating to coral reef protection</td>
<td>17</td>
</tr>
<tr>
<td>Prohibit all take (commercial and non-commercial) of herbivorous fish</td>
<td>16</td>
</tr>
<tr>
<td>Establish a network of permanent Herbivore Fishery Management Area (FMA) which fully protect all herbivores</td>
<td>10</td>
</tr>
<tr>
<td>Identify, collect, propagate and replant corals found to be resistant to bleaching</td>
<td>9</td>
</tr>
<tr>
<td>Prohibit all take (commercial and non-commercial) of parrotfishes</td>
<td>8</td>
</tr>
<tr>
<td>Establish bag limits to protect parrotfishes</td>
<td>6</td>
</tr>
<tr>
<td>Prohibit aquarium collecting of herbivorous fishes</td>
<td>6</td>
</tr>
<tr>
<td>Prohibit only the commercial take of herbivorous fish</td>
<td>6</td>
</tr>
</tbody>
</table>
Next Steps

Meet with Hawaii Division of Aquatic Resources to choose management strategy

Photo: Hawaii Division of Aquatic Resources